Enzymatic strategies and biocatalysts for amide bond formation: tricks of the trade outside of the ribosome.

نویسندگان

  • Anwesha Goswami
  • Steven G Van Lanen
چکیده

Amide bond-containing (ABC) biomolecules are some of the most intriguing and functionally significant natural products with unmatched utility in medicine, agriculture and biotechnology. The enzymatic formation of an amide bond is therefore a particularly interesting platform for engineering the synthesis of structurally diverse natural and unnatural ABC molecules for applications in drug discovery and molecular design. As such, efforts to unravel the mechanisms involved in carboxylate activation and substrate selection has led to the characterization of a number of structurally and functionally distinct protein families involved in amide bond synthesis. Unlike ribosomal synthesis and thio-templated synthesis using nonribosomal peptide synthetases, which couple the hydrolysis of phosphoanhydride bond(s) of ATP and proceed via an acyl-adenylate intermediate, here we discuss two mechanistically alternative strategies: ATP-dependent enzymes that generate acylphosphate intermediates and ATP-independent transacylation strategies. Several examples highlighting the function and synthetic utility of these amide bond-forming strategies are provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Graphene Biocatalysts for Development of Enzymatic Biofuel Cells: A Short Review

At this short review, different chemical production of 3D graphene biocatalysts and developing of its characters by new substituted for using in enzymatic fuel cells are investigated. Also, the current ways of production of 3D Graphene Biocatalysts, different types of substitutes, the best methods for having the highest efficiency, the physical, chemical and biological characters of new biocata...

متن کامل

Ten remarks on peptide bond formation on the ribosome.

Peptide-bond formation is the enzymatic activity of the ribosome. The catalytic site is made up of ribosomal RNA, indicating that the ribosome is a ribozyme. This review summarizes the recent progress in understanding the mechanism of peptide bond formation. The results of biochemical and kinetic experiments, mutagenesis studies and ribosome crystallography suggest that the approx. 10(7)-fold r...

متن کامل

The Principles and Recent Applications of Bioelectrocatalysis

Bioelectrocatalysis is a phenomenon concerned with biological catalysts, which accelerate the electrochemical reactions. Bioelectrocatalysis has been widely explored by the research community in various directions. Enzymes can catalyze different chemical reactions in living organisms by enzymes as the most important biological catalysts. These enzymatic biocatalysts are commercially available a...

متن کامل

استفاده از سلول های در حال استراحت سویه ی بومی غربال گری شده Rhodotorula sp. CW03 در بیوترانسفورماسیون کافئین به تئوفیلین و پاراگزانتین

Introduction & Objective: In recent years, microorganisms have been applied as biocatalysts for making pharmaceutically natural products. Microbial biotransformation of caffeine suggests a dual approach for biodegradation of toxic caffeine from polluted environments and a method for the production of medically and pharmaceutically valuable dimethylxanthines. The present work describes the ident...

متن کامل

Activity of 3′-thioAMP derivatives as ribosomal P-site substrates

The ribosome is a large RNP complex but its main enzymatic activity, the peptidyl transferase, is a ribozyme. As many RNA enzymes use divalent metal ions in catalysis, one of the hypotheses put forward proposed that metal ions might aid peptide bond formation. To be able to test a possible coordination of a metal ion to the 3'-bridging oxygen of P-site substrates, a 3'-thioAMP was synthesized. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular bioSystems

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2015